Разработка динамических сайтов
SEO услуги
Управление контекстной рекламой

Вход на хостинг

Имя пользователя:*

Пароль пользователя:*

IT-новости

20.04.2016 iPhone 2017 года поместят в водонепроницаемый корпус из стекла

Линейка iPhone в новом году серьезно поменяется. В этом уверен аналитический исследователь Мин Чи Ку......

подробнее

30.07.2015 Ищем уникальный контент для сайта

Ищем уникальный контент для сайта Без уникального контента Ваш сайт обречен на то, что его страницы......

подробнее

11.05.2015 Распространённые ошибки разработчиков сайтов

Не секрет, что в сети Интернет насчитывается миллионы сайтов, и каждый день появляются тысячси новых......

подробнее

Начнем с главного: вопреки распространенному заблуждению процессор взаимодействует с оперативной памятью не напрямую, а через специальный контроллер, подключенный к системной шине процессора приблизительно так же, как и остальные контроллеры периферийных устройств. Причем механизм обращения к портам ввода/вывода и к ячейкам оперативной памяти с точки зрения процессора практически идентичен. Процессор сначала выставляет на адресную шину требуемый адрес и в следующем такте уточняет тип запроса: происходит ли обращение к памяти, портам ввода/вывода или подтверждение прерывания. В некотором смысле оперативную память можно рассматривать как совокупность регистров ввода/вывода, каждый из которых хранит некоторое значение.

Механизм взаимодействия памяти и процессора выглядит приблизительно так: когда процессору требуется получить содержимое ячейки оперативной памяти, он, дождавшись освобождения шины, через механизм арбитража захватывает шину в свое владение (что занимает один такт) и в следующем такте передает адрес искомой ячейки. Еще один такт уходит на уточнение типа запроса, назначение уникального идентификатора транзакции, сообщение длины запроса и маскировку байтов шины. Подробнее об этом можно прочитать в спецификациях на шины P6 и EV6, здесь же достаточно отметить, что эта фаза запроса осуществляется за три такта системной шины. Независимо от размера читаемой ячейки (байт, слово, двойное слово) длина запроса всегда равна размеру линейки L2-кэша, что составляет 32 байта для процессоров K6/P-II/P-III, 64 байта – для AMD Athlon и 128 байт – для P-4[1]. Такое решение значительно увеличивает производительность памяти при последовательном чтении ячеек и практически не уменьшает ее при чтении ячеек вразброс, что и неудивительно, т.к. латентность чипсета в несколько раз превышает реальное время передачи данных и им можно пренебречь.

Контроллер шины (BIU – Bus Interface Init), «вживленный» в северный мост чипсета, получив запрос от процессора, в зависимости от ситуации либо передает его соответствующему агенту (в нашем случае – контроллеру памяти), либо ставит запрос в очередь, если агент в этот момент чем-то занят. Потребность в очереди объясняется тем, что процессор может посылать очередной запрос, не дожидаясь завершения обработки предыдущего, а раз так – запросы приходится где-то хранить. Чем больше запросов может накапливать чипсет, тем выше максимально достижимый параллелизм обработки данных, а значит, выше и скорость. Чипсеты старого поколения (Intel 815, в частности) могли накапливать всего лишь до четырех запросов, однако с ростом отношения латентность/пропускная способность оперативной памяти размера очереди стало катастрофически не хватать и в Intel 875P/SiS 655 она была увеличена до 12 элементов.

При первой же возможности чипсет извлекает запрос из очереди и передает его контроллеру памяти (MCT – Memory Controller). В течение одного такта он декодирует полученный адрес в физический номер строки/столбца ячейки и передает его модулю памяти по сценарию, описанному в приложении «приблизительная схема взаимодействия памяти и процессора».

В зависимости от архитектуры контроллера памяти он работает с памятью либо на частоте системной шины (синхронный контроллер), либо поддерживает память любой другой частоты (асинхронный контроллер). Синхронные контроллеры ограничивают пользователей ПК в выборе модулей памяти, но, с другой стороны, асинхронные контроллеры менее производительны. Почему? Во-первых, в силу несоответствия частот, читаемые данные не могут быть непосредственно переданы на контроллер шины, и их приходится сначала складывать в промежуточный буфер, откуда шинный контроллер сможет их извлекать с нужной ему скоростью. (Аналогичная ситуация наблюдается и с записью). Во-вторых, если частота системной шины и частота памяти не соотносятся как целые числа, то перед началом обмена приходится дожидаться завершения текущего тактового импульса. Таких задержек (в просторечии пенальти) возникает две: одна – при передаче микросхеме памяти адреса требуемой ячейки, вторая – при передаче считанных данных шинному контроллеру. Все это значительно увеличивает латентность подсистемы памяти, т. е. промежутка времени с момента посылки запроса до получения данных. SiS 655 – асинхронный контроллер со всеми вытекающими отсюда достоинствами и недостатками, а Intel 875P – это асинхронный контроллер, при совпадении частот шины и памяти автоматически переходящий в синхронный режим. Сочетая сильные стороны обоих типов контроллеров, чипсет Intel 875P практически не имеет недостатков (одним выстрелом – двух зайцев).

Другой фундаментальной характеристикой чипсета являются типы поддерживаемых им модулей памяти, что играет решающую роль в выборе чипсета пользователем (точнее, разработчиком материнской платы, но это не суть важно). Чипсет Intel 860, сделавший в свое время ставку на мало популярную память типа RDRAM, несмотря на все маркетинговые усилия, так и не получил большего распространения, поэтому компании Intel пришлось переориентироваться на DDR-SDRAM, де-факто ставшей массовой памятью к настоящему времени. Чипсет Intel 875P поддерживает три наиболее перспективных типа памяти: DDR266, DDR333 и DDR400, что выгодно отличает его от чипсета SiS 655, который память типа DDR400, увы, не поддерживает (подробную информацию о поддерживаемых типах памяти вы найдете в приложении «выбор и конфигурирование памяти»)!


Предыдущая страницаОглавлениеСледующая страница
 
[001] [002] [003] [004] [005] [006] [007] [008] [009] [010] [011] [012] [013] [014] [015] [016] [017] [018] [019] [020]
[021] [022] [023] [024] [025] [026] [027] [028] [029] [030] [031] [032] [033] [034] [035] [036] [037] [038] [039] [040]
[041] [042] [043] [044] [045] [046] [047] [048] [049] [050] [051] [052] [053] [054] [055] [056] [057] [058] [059] [060]
[061] [062] [063] [064] [065] [066] [067] [068] [069] [070] [071] [072] [073] [074] [075] [076] [077] [078] [079] [080]
[081] [082] [083] [084] [085] [086] [087] [088] [089] [090] [091] [092] [093] [094] [095] [096] [097] [098] [099] [100]
[101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140]
[141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151]

+7 (831) 413-63-27
ООО Дельта-Технология ©2007 - 2023 год
Нижний Новгород, ул. Дальняя, 17А.
Rambler's Top100