Разработка динамических сайтов
SEO услуги
Управление контекстной рекламой

Вход на хостинг

Имя пользователя:*

Пароль пользователя:*

IT-новости

20.04.2016 iPhone 2017 года поместят в водонепроницаемый корпус из стекла

Линейка iPhone в новом году серьезно поменяется. В этом уверен аналитический исследователь Мин Чи Ку......

подробнее

30.07.2015 Ищем уникальный контент для сайта

Ищем уникальный контент для сайта Без уникального контента Ваш сайт обречен на то, что его страницы......

подробнее

11.05.2015 Распространённые ошибки разработчиков сайтов

Не секрет, что в сети Интернет насчитывается миллионы сайтов, и каждый день появляются тысячси новых......

подробнее

Однако обеспечить формальную поддержку высокоскоростных типов памяти – это только полдела! Ведь с этой самой памятью еще надо уметь эффективно работать. Можно с сумасшедшей скоростью черпать воду наперстком, а можно степенно и деловито хлебать ее литровой пивной кружкой. Так что не надо путать тактовую частоту чего бы то ни было с реально достижимой производительностью.

Начнем с того, что пропускная способность наилучшей на сегодняшний день памяти DDR400, составляющая, как известно, 3,2 ГГб/сек, много меньше пропускной способности системной шины последних моделей Pentium-4, вмещающих в себя 4,3 ГГб/сек и 6,4 ГГб/сек на частотах в 4х133 МГц и 4x200 МГц соответственно. Причем отметим, что 3,2 ГГб/сек – это пиковая производительность, достижимая лишь при параллельной обработке данных, а на практике из-за высокой латентности чипсета даже при операции копирования блоков памяти она (пропускная способность) оказывается в полтора-два раза меньше! К тому же часть пропускной способности неизбежно «съедает» AGP-карта, и процессорной шине практически ничего не остается. Так какой же тогда смысл покупать (и выпускать!) процессоры с быстрыми шинами, если этой быстротой воспользоваться все равно не удается?!

А поскольку надеяться на быстрый прогресс в области совершенствования памяти нам, увы, не приходится, разработчики были вынуждены прибегнуть к усилению параллелизма. Короче говоря, если один землекоп выкапывает один метр траншеи за час, то N землекопов выкопают N метров за это же самое время. Чипсет Intel 875P отличается от своих предшественников тем, что умеет работать с двумя парами модулей памяти параллельно. То есть если тот же Intel 845 загружал запрошенную у него кэш-строку за два пакетных цикла, то Intel 875P загружает ее за один, обращаясь сразу к двум модулям памяти одновременно! Эта мера вдвое увеличивает пропускную способность, но никак не влияет на латентность! А поскольку для многих вычислительных алгоритмов величина латентности как раз и является доминирующей, то оптимизм по поводу такого параллелизма выходит не столь уж и радужным. При том же копировании производительность увеличивается не в двое, а всего в полтора раза! Таким образом, на реальных задачах расчетная пропускная способность все равно не достигается! Что же касается хаотичного доступа к памяти, характерного для таких структур, как деревья и списки (а это базовые структуры данных!), здесь ситуация еще хуже! Оперативная память отнюдь не так однородна, как кажется: она делится на банки, банки делятся на страницы, страницы делятся на строки, ну а строки делятся на ячейки. Прежде чем микросхема памяти «позволит» обратиться к ячейкам той или иной строки, соответствующая ей страница должна быть открыта, а на эту операцию требуется затратить весьма внушительное количество времени, практически сопоставимое с выполнением всего пакетного цикла целиком! Зато все запросы, направленные к открытой странице, могут выполняться без каких-либо задержек. Большинство модулей памяти имеют от четырех до восьми банков, а потому чипсет Intel 875P может удерживать в открытом состоянии до 32 страниц одновременно, что соответствует 256 Кб памяти. От максимально возможного количества открытых страниц напрямую зависит и производительность приложений, обрабатывающих более одного потока данных параллельно (к этой категории относятся, в частности, многие графические приложения). Отсюда: лучше иметь четыре отдельных модуля по 128 Мб, чем один на 512 Мб! При работе в двухканальном режиме это даст 16 одновременно открытых страниц плюс учетверенную (реально удвоенную) пропускную способность за счет усиленного параллелизма. Емкость и организация всех модулей при этом должна быть строго идентичной, в противном случае в многоканальном режиме чипсет просто не сможет работать! Требования к рабочей частоте менее жестки (более быстрая память будет работать на частоте самой медленной) и двухканальный режим разночастотные модули поддерживать в принципе будут, однако чипсет сможет работать только в обычном режиме адресации. А одна из главных вкусностей Intel 875P как раз и заключается в том, что он поддерживает продвинутый режим динамической адресации.

Что же это за гусь такой и с чем его едят? В режиме обычной адресации (в котором функционирует подавляющее большинство чипсетов) банки памяти следуют один за другим и при последовательном чтении памяти располагаются так: страница 0 банк 0 –> страница 0 банк 1 –> страница 0 банк 2 –> страница 0 банк 3 –> страница 1 банк 1… Как следствие увеличивается удельная плотность банков на страницу (а значит, и возрастают накладные расходы на их более частое открытие/закрытие). В режиме динамической адресации чипсет отображает физические адреса памяти на адреса системной шины так, что банки начинают переключаться вдвое реже. Сначала следует последовательность страница 0 банк 0 –> страница 0 банк 1 –> страница 1 банк 1 –> страница 1 банк 1 –> страница 2 банк 0, а когда станицы первых двух банков полностью исчерпают себя: страница 0 банк 2 –> страница 0 банк 3 –> страница 1 банк 2 –> страница 1 банк 3 –> страница 2 банк 2. Достоинством нового решения является значительное уменьшение латентности чтения, что немаловажно для подавляющего большинства приложений и потому отказываться от этой возможности, право же, не стоит!


Предыдущая страницаОглавлениеСледующая страница
 
[001] [002] [003] [004] [005] [006] [007] [008] [009] [010] [011] [012] [013] [014] [015] [016] [017] [018] [019] [020]
[021] [022] [023] [024] [025] [026] [027] [028] [029] [030] [031] [032] [033] [034] [035] [036] [037] [038] [039] [040]
[041] [042] [043] [044] [045] [046] [047] [048] [049] [050] [051] [052] [053] [054] [055] [056] [057] [058] [059] [060]
[061] [062] [063] [064] [065] [066] [067] [068] [069] [070] [071] [072] [073] [074] [075] [076] [077] [078] [079] [080]
[081] [082] [083] [084] [085] [086] [087] [088] [089] [090] [091] [092] [093] [094] [095] [096] [097] [098] [099] [100]
[101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140]
[141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151]

+7 (831) 413-63-27
ООО Дельта-Технология ©2007 - 2023 год
Нижний Новгород, ул. Дальняя, 17А.
Rambler's Top100