Вход на хостинг
IT-новости
20.04.2016 iPhone 2017 года поместят в водонепроницаемый корпус из стекла
Линейка iPhone в новом году серьезно поменяется. В этом уверен аналитический исследователь Мин Чи Ку......
30.07.2015 Ищем уникальный контент для сайта
Ищем уникальный контент для сайта Без уникального контента Ваш сайт обречен на то, что его страницы......
Рисунок 1
После прочтения всего вышеизложенного у многих может возникнуть вопрос, в чем же отличие и преимущество искусственных иммунных систем от искусственных нейронных сетей. Работы по изучению искусственных нейронных сетей (Artificial Neural Networks – ANN) ведутся сравнительно давно и отнюдь небезуспешно, основной пик работ приходится где-то на семидесятые-восьмидесятые. В результате разработано множество теорий и алгоритмов, теория Дарвинизма привела к появлению эволюционных алгоритмов (evolutionary algorithms – EA). Обе эти сети способны обучаться, ведя наблюдение за изменением параметров системы, и как результат достигать максимально возможной эффективности, имеют ассоциативную память, но в любом случае необходима первоначальная настройка и подгонка параметров. Однако отличие нервной и иммунной систем человека накладывает и свои отпечатки на алгоритмы работы. Для AIS характерны самоорганизация и эволюция, для ANN поведение во многом зависит от алгоритма. Количество ячеек AIS не является строго фиксированным, их положение изменяется динамически, происходит постоянное производство и отмирание ячеек, нейроны же имеют конкретное местоположение, и количество их фиксировано. Более того, для первой не характерно длительное взаимодействие между элементами, концентрация и характер их динамически изменяется, для второй оно постоянно и задается при подключении. Далее, для AIS, как правило, нехарактерно централизованное управление и даже более того, оно противоречит самой природе вопроса, в ANN всем заправляет мозг, настраивающий веса. Одна из проблем для изучающих ANN состоит в том, что иногда трудно выделить, что именно сеть сейчас «знает».
Более подробно этот вопрос освещен в документах «Immune and Neural Network Models:
n Theoretical and
Empirical Comparisons»:
n «Comparing Immune
and Neural Networks»: