Разработка динамических сайтов
SEO услуги
Управление контекстной рекламой

Вход на хостинг

Имя пользователя:*

Пароль пользователя:*

IT-новости

20.04.2016 iPhone 2017 года поместят в водонепроницаемый корпус из стекла

Линейка iPhone в новом году серьезно поменяется. В этом уверен аналитический исследователь Мин Чи Ку......

подробнее

30.07.2015 Ищем уникальный контент для сайта

Ищем уникальный контент для сайта Без уникального контента Ваш сайт обречен на то, что его страницы......

подробнее

11.05.2015 Распространённые ошибки разработчиков сайтов

Не секрет, что в сети Интернет насчитывается миллионы сайтов, и каждый день появляются тысячси новых......

подробнее

До сих пор мы оперировали понятиями привычной нам арифметики, и потому добрые две трети полей таблицы остались незаполненными. В самом деле, уравнения типа 2x = 3 в целых числах не разрешимы и ряд индексов не соответствует никаким полиномам! Так-то оно так, но в силу того, что количество полиномов всякого поля Галуа равно количеству всевозможных индексов, мы можем определенным образом сопоставить их друг другу, закрыв глаза на то, что с точки зрения обычной математики такое действие не имеет никакого смысла. Конкретная схема сопоставления может быть любой, главное - чтобы она была внутренне непротиворечивой, то есть удовлетворяла всем правилам групп, перечисленным выше (см. «Поля Галуа»).

Естественно, поскольку от выбранной схемы сопоставления напрямую зависит и конечный результат, обе стороны (кодер и декодер Рида-Соломона) должны соблюдать определенные договоренности. Однако различные кодеры/декодеры Рида-Соломона могут использовать различные схемы сопоставления, несовместимые друг с другом.

В частности, декодер Рида-Соломона, встроенный в CD-ROM привод, выполняет умножение по следующей таблице. Встретив такую таблицу в дизассемблерном листинге исследуемой вами программы, вы сможете быстро и надежно отождествить использующие ее функции:

Таблица 2. Lock-up-таблица для GF(256) Первая слева колонка – полиномы/индексы (обычно обозначается, как i), вторая – таблица степеней примитивного полинома 2 (обычно обозначается как alpha_of), третья – индексы, соответствующие данному полиному (обычно обозначается как index_of)

 

i alpha index    i  alpha index      i alpha index i alpha index i alpha index i alpha ind

000 001    -1    043 119      218    086 177      219    129 023      112    172 123      220    215 239   170

001 002      0    044 238      240    087 127      189    130 046      192    173 246      252    216 195   251

002 004      1    045 193      18    088 254      241    131 092      247    174 241      190    217 155   96

003 008    25    046 159      130    089 225      210    132 184      140    175 255      97    218 043   134

004 016      2    047 035      69    090 223      19    133 109      128    176 227      242    219 086   177

005 032    50    048 070      29    091 163      92    134 218      99    177 219      86    220 172   187

006 064    26    049 140      181    092 091      131    135 169      13    178 171      211    221 069   204

007 128    198    050 005      194    093 182      56    136 079      103    179 075      171    222 138   62


Предыдущая страницаОглавлениеСледующая страница
 
[001] [002] [003] [004] [005] [006] [007] [008] [009] [010] [011] [012] [013] [014] [015] [016] [017] [018] [019] [020]
[021] [022] [023] [024] [025] [026] [027] [028] [029] [030] [031] [032] [033] [034] [035] [036] [037] [038] [039] [040]
[041] [042] [043] [044] [045] [046] [047] [048] [049] [050] [051] [052] [053] [054] [055] [056] [057] [058] [059] [060]
[061] [062] [063] [064] [065] [066] [067] [068] [069] [070] [071] [072] [073] [074] [075] [076] [077] [078] [079] [080]
[081] [082] [083] [084] [085] [086] [087] [088] [089] [090] [091] [092] [093] [094] [095] [096] [097] [098] [099] [100]
[101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140]
[141] [142] [143] [144] [145] [146] [147] [148] [149] [150]

+7 (831) 413-63-27
ООО Дельта-Технология ©2007 - 2023 год
Нижний Новгород, ул. Дальняя, 17А.
Rambler's Top100