Разработка динамических сайтов
SEO услуги
Управление контекстной рекламой

Вход на хостинг

Имя пользователя:*

Пароль пользователя:*

IT-новости

20.04.2016 iPhone 2017 года поместят в водонепроницаемый корпус из стекла

Линейка iPhone в новом году серьезно поменяется. В этом уверен аналитический исследователь Мин Чи Ку......

подробнее

30.07.2015 Ищем уникальный контент для сайта

Ищем уникальный контент для сайта Без уникального контента Ваш сайт обречен на то, что его страницы......

подробнее

11.05.2015 Распространённые ошибки разработчиков сайтов

Не секрет, что в сети Интернет насчитывается миллионы сайтов, и каждый день появляются тысячси новых......

подробнее

Ага, крайний правый коэффициент равен единице, затем следуют два нулевых коэффициента, потом единичный коэффициент… Короче говоря, получается следующее: 1x6 + 1x5 + 0x4 + 1x3+ 0x2 + 0+ 1. По сути говоря, битовая строка «1101001» является одной из форм записи вышеуказанного полинома – ненаглядной с точки зрения неподготовленного человека, но удобной для машинной обработки. Постойте, но если 69h уже представляет собой полином, то в чем разница между сложением полиномов 69h и 27h и сложением целых чисел 69h и 27h?! Разница несомненно есть. Как еще показал Ницше: фактов нет, а есть одни лишь интерпретации. Интерпретация же чисел и полиномов различна, и математические операции над ними выполняются посовершенно независимым правилам.

Коэффициенты в полиномиальной арифметике строго типизированы и коэффициент при xk имеет иной тип, нежели при xm (конечно, при том условии, что k ≠ m).

А операции над числами различных типов категорически не допустимы! Все коэффициенты обрабатываются независимо, а возникающий при этом перенос в старший разряд (заем из старшего разряда) попросту не учитывается. Покажем это на примере сложения чисел 69h и 27h:

Листинг 1. Сложение, выполненное по правилам полиномиальной двоичной арифметики (слева) и сложение, выполненное по правилам обычной арифметики (справа)

 

 1101001 (69h)          1101001 (69h)

+0100111 (27h)          +0100111 (27h)

 -------                -------

 1001110 (4Eh)          10010000 (90h)

Простейшие расчеты показывают, что сложение полиномов по модулю два дает тот же самый результат, что их вычитание, и «волшебным» образом совпадает с битовой операцией XOR. Впрочем, совпадение с XOR – чистая случайность, но вот эквивалентность сложения и вычитания заставляет заново пересматривать привычную природу вещей, вспоминая задачки из серии «у Маши было одно яблоко, Петя отнял у нее его, затем ей подарили еще одно, спрашивается: сколько всего яблок у Маши осталось? А сколько у нее было бы, если бы первое яблоко осталось не отнятым?». С точки зрения арифметики по модулю два ответ: один и ноль соответственно. Да! Не отними бы Петя у Маши яблоко, 1 + 1 == 0 и бедная Маша вообще осталась бы ни с чем. Так что, мальчики, почаще отнимайте яблоки у девушек – учите их компьютерной грамотности!

Впрочем, мы отвлеклись. Вернемся к фиктивному члену x нашего полинома и его коэффициентам. Благодаря их типизации и отсутствию взаимных связей, мы можем осуществлять обработку сколь угодно длинных чисел, просто XOR составляющие их биты на потоке. Это и есть одно из тех достоинств полиномиальной арифметики, которые не видны с первого взгляда, но благодаря которым полиномиальная арифметика стала так широко распространена.


Предыдущая страницаОглавлениеСледующая страница
 
[001] [002] [003] [004] [005] [006] [007] [008] [009] [010] [011] [012] [013] [014] [015] [016] [017] [018] [019] [020]
[021] [022] [023] [024] [025] [026] [027] [028] [029] [030] [031] [032] [033] [034] [035] [036] [037] [038] [039] [040]
[041] [042] [043] [044] [045] [046] [047] [048] [049] [050] [051] [052] [053] [054] [055] [056] [057] [058] [059] [060]
[061] [062] [063] [064] [065] [066] [067] [068] [069] [070] [071] [072] [073] [074] [075] [076] [077] [078] [079] [080]
[081] [082] [083] [084] [085] [086] [087] [088] [089] [090] [091] [092] [093] [094] [095] [096] [097] [098] [099] [100]
[101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140]
[141] [142] [143] [144] [145] [146] [147] [148] [149] [150]

+7 (831) 413-63-27
ООО Дельта-Технология ©2007 - 2023 год
Нижний Новгород, ул. Дальняя, 17А.
Rambler's Top100