Разработка динамических сайтов
SEO услуги
Управление контекстной рекламой

Вход на хостинг

Имя пользователя:*

Пароль пользователя:*

IT-новости

20.04.2016 iPhone 2017 года поместят в водонепроницаемый корпус из стекла

Линейка iPhone в новом году серьезно поменяется. В этом уверен аналитический исследователь Мин Чи Ку......

подробнее

30.07.2015 Ищем уникальный контент для сайта

Ищем уникальный контент для сайта Без уникального контента Ваш сайт обречен на то, что его страницы......

подробнее

11.05.2015 Распространённые ошибки разработчиков сайтов

Не секрет, что в сети Интернет насчитывается миллионы сайтов, и каждый день появляются тысячси новых......

подробнее

// функция возвращает результат сложения (вычитания)

// двух полиномов a и b по модулю 2

int gf_sum(int a, int b)

{

    return a ^ b;

}

Умножение в полях Галуа

Открыв учебник математики за третий класс (если мне не изменяет память), мы найдем, что умножение представляет собой многократное сложение и, коль скоро сложение в полях Галуа мы выполнять уже научились, мы имеем все основания считать, что реализация функции умножения не создаст особого труда. Так? А вот и нет! Я всегда знал, что дважды два равно четырем, до конца никогда не верил в это и, впервые столкнувшись с полями Галуа, понял, насколько был прав[2]. Выяснилось, что существуют и такие математики, где дважды два не равно четырем, а операция умножения определяется не через сложение, а совсем по-другому.

Действительно, если попытаться «обернуть» функцию gf_sum в цикл, мы получим то же самое сложение только в профиль. a * b будет равно а, если b четно, и нулю, если b нечетно. Ну и кому такое умножение нужно? Собственно, функция «настоящего» умножения Галуа настолько сложна и ресурсоемка, что для упрощения ее реализации приходится прибегнуть к временному преобразованию полиномов в индексную форму, последующему сложению индексов, выполняемому по модулю GF, и обратному преобразованию суммы индексов в полиномиальную форму.

Что такое индекс? Это - показатель степени при основании два, дающий искомый полином. Например, индекс полинома 8 равен 3 (23 = 8), а индекс полинома 2 равен 1 (21 = 2). Легко показать, что a * b = 2i * 2j = 2(i+j). В частности, 2 * 8 = 23 * 21 = 2(3+1) = 24 = 16. Составим следующую табличку и немного поэкспериментируем с ней:

Таблица 1. Таблица полиномов (левая колонка) и соответствующих им степеней двойки (правая колонка)

 

i

alpha_of[i]

001

0

002

1

004

2

008

3

016

4


Предыдущая страницаОглавлениеСледующая страница
 
[001] [002] [003] [004] [005] [006] [007] [008] [009] [010] [011] [012] [013] [014] [015] [016] [017] [018] [019] [020]
[021] [022] [023] [024] [025] [026] [027] [028] [029] [030] [031] [032] [033] [034] [035] [036] [037] [038] [039] [040]
[041] [042] [043] [044] [045] [046] [047] [048] [049] [050] [051] [052] [053] [054] [055] [056] [057] [058] [059] [060]
[061] [062] [063] [064] [065] [066] [067] [068] [069] [070] [071] [072] [073] [074] [075] [076] [077] [078] [079] [080]
[081] [082] [083] [084] [085] [086] [087] [088] [089] [090] [091] [092] [093] [094] [095] [096] [097] [098] [099] [100]
[101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140]
[141] [142] [143] [144] [145] [146] [147] [148] [149] [150]

+7 (831) 413-63-27
ООО Дельта-Технология ©2007 - 2023 год
Нижний Новгород, ул. Дальняя, 17А.
Rambler's Top100