Разработка динамических сайтов
SEO услуги
Управление контекстной рекламой

Вход на хостинг

Имя пользователя:*

Пароль пользователя:*

IT-новости

20.04.2016 iPhone 2017 года поместят в водонепроницаемый корпус из стекла

Линейка iPhone в новом году серьезно поменяется. В этом уверен аналитический исследователь Мин Чи Ку......

подробнее

30.07.2015 Ищем уникальный контент для сайта

Ищем уникальный контент для сайта Без уникального контента Ваш сайт обречен на то, что его страницы......

подробнее

11.05.2015 Распространённые ошибки разработчиков сайтов

Не секрет, что в сети Интернет насчитывается миллионы сайтов, и каждый день появляются тысячси новых......

подробнее

Предварительное обучение фильтра наборами заранее отсортированных на спам и легальную почту сообщений позволит задействовать байесовый анализатор значительно раньше, а также еще больше повысить точность срабатывания. Команды, «скармливающие» фильтру такие сообщения, представлены ниже:

# sa-learn --spam ~serg/sa/spams

Learned tokens from 20 message(s) (20 message(s) examined)

# sa-learn --ham ~serg/sa/hams

Learned tokens from 5 message(s) (5 message(s) examined)

Последним параметром указывается либо файл (в формате mailbox), либо каталог, содержащий примеры писем (например, в формате msg). Нужно заметить, что обучение может выполняться довольно долго (у меня обработка 25 сообщений заняла почти минуту).

Вполне естественно, что Spamassassin, как и любой другой антиспамовый фильтр, будет пропускать часть спама (всегда найдутся грамотно составленные сообщения, успешно проходящие через большинство правил). Сбор таких писем в отдельную папку и периодическая передача их Spamassassin в режиме обучения позволят в будущем повысить точность срабатывания за счет более высокого балла, присваиваемого письму статистическим анализатором.

После обучения вы можете просмотреть дамп базы:

# sa-learn --dump

0.000   0          3          0  non-token data: bayes db version

0.000   0       2792          0  non-token data: nspam

0.000   0        623          0  non-token data: nham

0.000   0     131028          0  non-token data: ntokens

0.000   0 1010692073          0  non-token data: oldest atime

0.000   0 1129590682          0  non-token data: newest atime

0.000   0 1129530349          0  non-token data: last journal sync atime

0.000   0          0          0  non-token data: last expiry atime


Предыдущая страницаОглавлениеСледующая страница
 
[001] [002] [003] [004] [005] [006] [007] [008] [009] [010] [011] [012] [013] [014] [015] [016] [017] [018] [019] [020]
[021] [022] [023] [024] [025] [026] [027] [028] [029] [030] [031] [032] [033] [034] [035] [036] [037] [038] [039] [040]
[041] [042] [043] [044] [045] [046] [047] [048] [049] [050] [051] [052] [053] [054] [055] [056] [057] [058] [059] [060]
[061] [062] [063] [064] [065] [066] [067] [068] [069] [070] [071] [072] [073] [074] [075] [076] [077] [078] [079] [080]
[081] [082] [083] [084] [085] [086] [087] [088] [089] [090] [091] [092] [093] [094] [095] [096] [097] [098] [099] [100]
[101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120]
[121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140]
[141] [142] [143] [144] [145] [146] [147] [148]

+7 (831) 413-63-27
ООО Дельта-Технология ©2007 - 2023 год
Нижний Новгород, ул. Дальняя, 17А.
Rambler's Top100